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A family of P-stable exponentially-fitted methods for the numerical solution of the
Schrödinger equation is developed in this paper. An application to the resonance prob-
lem of the radial Schrödinger equation indicates that the new method is generally more
efficient than the previously developed exponentially-fitted methods of the same kind.

1. Introduction

The numerical solution of the Schrödinger equation has been the subject of great
activity (see [1–3,8,13–19,23–34,37]), the aim being to achieve a fast and reliable
method that generates a numerical solution. The radial form of the Schrödinger equa-
tion can be written as

y′′(x) =
[
l(l + 1)/x2 + V (x)− k2]y(x). (1)

Equations of this type occur very frequently in theoretical physics and chemistry,
quantum physics and chemistry, chemical physics and physical chemistry (see, for
example, [12–14,21]), and it is needed to be able to solve them both efficiently and
reliably by numerical methods. In (1), the function W (x) = l(l + 1)/x2 + V (x) is
called the effective potential, which satisfies W (x)→ 0 as x→∞, k2 is a real number
denoting the energy, l is a given integer and V is a given function which denotes the
potential. The boundary conditions are

y(0) = 0, (2)

and a second boundary condition, for large values of x, determined by physical con-
siderations.

It is known that a frutiful way for developing efficient methods for the solution
of (1) is to use exponential fitting. Raptis and Allison [27] have derived a Numerov-
type exponentially-fitted method. The computational results obtained in [27] indicated
that these fitted methods are much more efficient than Numerov’s method for the
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solution of (1). Since then, exponential fitting has been the subject of great activity.
An interesting paper in this general area is that of Ixaru and Rizea [14]. They showed
that for the resonance problem defined by (1) it is generally more efficient to derive
methods which exactly integrate functions of the form{

1,x,x2, . . . ,xp, exp(±vx),x exp(±vx), . . . ,xm exp(±vx)
}

, (3)

where v is the frequency of the problem, than to use classical exponential fitting
methods. The reason for this is explained in [33]. We note here that the resonance
problem is a stiff oscillatory problem. For the method obtained by Ixaru and Rizea [14]
we have m = 1 and p = 1. Another low-order method of this type (with m = 2 and
p = 0) was developed by Raptis [24]. Simos [30] has derived a four-step method of
this type which integrates more exponential functions and gives much more accurate
results than the four-step methods of Raptis [23,25]. For this method we have m = 3
and p = 0. Simos [31] has derived a family of four-step methods which give more
efficient results than other four-step methods. In particular, he has derived methods
with m = 0 and p = 5, m = 1 and p = 3, m = 2 and p = 1 and, finally, m = 3 and
p = 0. Also Raptis and Cash [28] have derived a two-step method fitted to (3) with
m = 0 and p = 5 based on the well-known Runge–Kutta-type sixth-order formula of
Cash and Raptis [2]. The method of Cash, Raptis and Simos [3] is also based on the
formula proposed in [2] and is fitted to (3) with m = 1 and p = 3. All the above
methods are not P-stable. Recently, Coleman and Ixaru [7] have derived P-stable
exponentially-fitted methods. The main problem of their approach is the requirement
for the knowledge of two frequencies for the same problem. For many real problems
this is impossible.

In this paper we introduce a new approach for exponential fitting. The purpose
of this paper is to derive a family of simple P-stable Numerov-type predictor–corrector
methods fitted to (3) and in particular to derive methods with m = 0 and p = 5, m = 1
and p = 3 and m = 2 and p = 1. The new methods are much more accurate than
the corresponding exponentially-fitted methods of Ixaru et al. [14] and Raptis [24].
We have applied the new methods to the resonance problem (which arises from the
one-dimensional Schrödinger equation) with two different types of potential. Note that
the resonance problem is one of the most difficult to solve of all the problems based on
the one-dimensional Schrödinger equation because it has highly oscillatory solutions,
especially for large resonances (see section 4).

2. Exponential multistep methods

For the numerical solution of the initial value problem

y(r) = f (x, y),

y(j)(A) = 0, j = 0, 1, . . . , r − 1, (4)
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the multistep methods of the form

k∑
i=0

aiyn+i = hr
k∑
i=0

bif (xn+i, yn+i) (5)

over the equally spaced intervals {xi}ki=0 in [A,B] can be used.
Method (5) is associated with the operator

L(x) =
k∑
i=0

[
aiz(x+ ih)− hrbiz(r)(x+ ih)

]
, (6)

where z is a continuously differentiable function.

Definition 1. The multistep method (5) is called algebraic (or exponential) of order p
if the associated linear operator L vanishes for any linear combination of the linearly
independent functions 1,x,x2, . . . ,xp+r−1 (or exp(v0x), exp(v1x), . . . , exp(vp+r−1x),
where vi, i = 0, 1, . . . , p+ r − 1, are real or complex numbers).

If vi = v for i = 0, 1, . . . ,n, n 6 p+ r− 1, then the operator L vanishes for any
linear combination of exp(vx),x exp(vx),x2 exp(vx), . . . ,xn exp(vx), exp(vn+1x), . . . ,
exp(vp+r−1x). Every exponential multistep method corresponds in a unique way, to
an algebraic multistep method (by setting vi = 0 for all i) (see [22,29]).

Lemma 1 (for proof, see [11,22]). Consider an operator L of the form (6). With
v ∈ C, h ∈ R, n > r if v = 0, and n > 1 otherwise, we have

L
[
xm exp(vx)

]
= 0, m = 0, 1, . . . ,n− 1,

L
[
xn exp(vx)

]
6= 0 (7)

if and only if the function ϕ has a zero of exact multiplicity s at exp(vh), where s = n
if v 6= 0, and s = n− r if v = 0, ϕ(w) = ρ(w)/ logr w − σ(w), ρ(w) =

∑k
i=0 aiw

i

and σ(w) =
∑k

i=0 biw
i.

Proposition 1 (for proof, see [29]). Consider an operator L with

L
[

exp(±vix)
]

= 0, j = 0, 1, . . . , k 6 p+ r − 1
2

; (8)

then, for given ai and p with ai = (−1)rak−i, there is a unique set of bi such that
bi = bk−i.

In the present paper we investigate the case r = 2.
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3. The derivation of exponentially-fitted methods for general problems

Let us consider the derivation of an exponentially-fitted multistep method (5)
which exactly integrates the set of functions {exp(±vjx)}kj=0. We will use this for the
numerical solution of the general problem (4).

Based on lemma 1 we obtain the equations

ρ
[

exp(±vjh)
]
− (±vjh)rσ

[
exp(±vjh)

]
= 0 (9)

or, equivalently,

k∑
i=0

[
ai exp(±vjh)− (±vjh)rbi exp(±vjh)

]
= 0, j = 0, 1, . . . ,n, (10)

where n 6 k and ai, bi, i = 0(1)k, are the coefficients of the multistep method (5).
We investigate here the case where k is a positive number. Then, based on

proposition 1, we have a set of k equations:

ai = (−1)rak−i, bi = bk−i, i = 0, 1, . . . , k. (11)

We now let ak = 1, which is the case adopted for all families of known multistep
methods. Then (10) and (11) give the following system of equations:

2
k/2−1∑
i=1

ai sinh

[(
k

2
− i
)
wj

]
+ ak/2 − wrj

[
2
k/2−1∑
i=0

bi cosh

[(
k

2
− i
)
wj

]
+ bk/2

]

= −2 sinh

(
kwj

2

)
, for r = 1, 3, 5, . . . , (12)

2
k/2−1∑
i=1

ai cosh

[(
k

2
− i
)
wj

]
+ ak/2 − wrj

[
2
k/2−1∑
i=0

bi cosh

[(
k

2
− i
)
wj

]
+ bk/2

]

= −2 cosh

(
kwj

2

)
, for r = 2, 4, 6, . . . , (13)

where wj = vjh and j = 0, 1, . . . , k.
We now prove that this system of equations (i) has a unique solution when

wi 6= ±wj , and (ii) leads to undetermined expressions of the form (0
0) when wi = ±wj

for some i and j.
Consider that X(w) and Y (w) (w = vh) are the matrices of the unknown coeffi-

cients in the systems of equations (12) and (13), respectively. Consider now case (i).
In order to make the matrices X(w) (or Y (w)) singular, their columns would be lin-
early dependent. The elements in a row consist of terms like coshMwj , sinhNwj
and powers of wj . The multiple angle hyperbolic functions can be expressed in terms
of powers of coshwj , sinhxj and their products. These with powers of wj form a
linearly independent set of functions. Therefore the columns cannot be linearly de-
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pendent. Hence in this case detX(w) 6= 0 (or detY (w) 6= 0). Thus the system of
equations (12) and (13) has a unique solution.

Consider case (ii). Here we simply have two rows of the matrix of coefficients
the same and, hence, detX(w) = 0 (or detY (w) = 0). Similarly, we have the right-
hand side of two of the equations in (12) or (13) the same, so that the numerator
determinant which is formed when a column of X(w) (or Y (w)) is replaced by the
right-hand column will also give two identical rows. Hence the numerator determinant
is 0. In these cases L’Hospital’s rule must be used.

4. The family of exponentially-fitted method

Consider the following family of methods:

yn+1 = yn+1 − ah2(fn − fn+1),

yn−1 = yn−1 − ah2(fn − fn−1),

ŷn = yn − bh2(fn+1 − 2fn + fn−1
)
,

yn+1 − 2yn + yn−1 = h2[b0(fn+1 + fn−1) + b1f̂n
]
. (14)

This method for appropriate values of bi, i = 0, 1, and a, b is of algebraic order four.
We require that the methods (14) should integrate exactly any linear combination

of the functions {
1,x,x2,x3,x4,x5, exp(±vx)

}
,{

1,x,x2,x3, exp(±vx),x exp(±vx)
}

,{
1,x exp(±vx),x exp(±vx),x2 exp(±vx)

}
. (15)

To construct a method of the form (14) which integrates exactly the functions (15),
we require that the method (14) integrates exactly (see [26,29]){

1,x, exp(±v0x), exp(±v1x), exp(±v2x)
}

(16)

and then put

v0 = v1 = 0 and v2 = v,

v0 = 0 and v1 = v2 = v,

v0 = v1 = v2 = v. (17)

The method (14) integrates exactly the functions 1,x. Demanding that (14) inte-
grates (16) exactly, we obtain the following system of equations for bi, i = 0, 1, and
a, b:

2b0w
2
j cosh(wj) + b1w

2
j − 2b1bw

4
j cosh(wj) + 2b1baw

6
j

− 2b1baw
6
j cosh(wj) + 2b1bw

4
j = 2 cosh(wj)− 2, (18)

where wj = vjh, j = 0, 1, 2.
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Solving for bi, i = 0, 1, and b we obtain:

Case I. v0 = v1 = 0, v2 = v:

b0 =
1

12
, b1 =

5
6

,

b =
1

10
−12 cosh(w) + 12 + 5w2 + w2 cosh(w)

w4(−1 + cosh(w))(1 + aw2)
. (19)

Case II. v0 = 0, v1 = v2 = v:

b0 =−1
4

(
2w2 cosh(w)− 4w4a+ w3 sinh(w)− 2w2 + 4w4 cosh(w)a+ w5 sinh(w)a

− 12aw2 + 16 cosh(w)− 8 cosh(w)2 + 24aw2 cosh(w)− 12 cosh(w)2aw2 − 8
)/(

w2(1− 2 cosh(w) + cosh(w)2 − 4aw2 cosh(w) + 2 cosh(w)2aw2 + 2aw2)),
b1 =

1
2

(
w3 sinh(w) − 12aw2 + 16 cosh(w) − 8 cosh(w)2 − 8− 12 cosh(w)2aw2

+ w5 sinh(w)a+ 4w4 cosh(w)2a− 4w4 cosh(w)a+ 24aw2 cosh(w)

− 2w2 cosh(w) + 2w2 cosh(w)2)/(w2(1− 2 cosh(w) + cosh(w)2

− 4aw2 cosh(w) + 2 cosh(w)2aw2 + 2aw2)),
b=−1

2

(
8 cosh(w)− 4− 4 cosh(w)2 + w3 sinh(w)

)/(
w2(w3 sinh(w)− 12aw2

+ 16 cosh(w)− 8 cosh(w)2 − 8− 12 cosh(w)2aw2 + w5 sinh(w)a

+ 4w4 cosh(w)2a− 4w4 cosh(w)a+ 24aw2 cosh(w)− 2w2 cosh(w)

+ 2w2 cosh(w)2)). (20)

Case III. v0 = v1 = v2 = v:

b0 =
(
2w2 cosh(w) + 3w4a cosh(w)− 8 cosh(w)− 24aw2 cosh(w) + 24w2a+ 4w2

+ 8− 2w sinh(w) + 6w4a+ 3w3a sinh(w)
)/((

2w3 cosh(w)a + w cosh(w)

+ 4w3a+ 2w + 6w2 sinh(w)a + sinh(w)
)
w3),

b1 =−2
(
−8 cosh(w)2 − 24 cosh(w)2aw2 + 2w2 cosh(w) + 24aw2 cosh(w)

+ 3w4a cosh(w) + 8 cosh(w)− 2w sinh(w) + 4w2 + 3w3a sinh(w) + 6w4a
)/((

2w3 cosh(w)a+ w cosh(w) + 4w3a+ 2w + 6w2 sinh(w)a + sinh(w)
)
w3),

b=−1
2

(
3 sinh(w) cosh(w) + cosh(w)2w − 3 sinh(w) −w cosh(w)− 2w sinh(w)2)

×
(
2w3 cosh(w)a +w cosh(w) + 4w3a+ 2w + 6w2 sinh(w)a+ sinh(w)

)/(
w
(
−2w sinh(w)2 + cosh(w)2w − 4w3 sinh(w)2a− 2w3 cosh(w)a

+ 2w3 cosh(w)2a− 6w2 cosh(w)a sinh(w) + 6w2 sinh(w)a + sinh(w)
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− w cosh(w) − sinh(w) cosh(w)
)(
−8 cosh(w)2 − 24 cosh(w)2aw2

+ 2w2 cosh(w) + 24aw2 cosh(w) + 3w4a cosh(w) + 8 cosh(w)− 2w sinh(w)

+ 4w2 + 3w3a sinh(w) + 6w4a
))
. (21)

5. Stability analysis

We investigate the numerical integration of the problem

y′′ = f (x, y), y(x0) = y0, y′(x0) = y′0. (22)

To examine the stability properties of the methods for solving the initial-value
problem (22), Lambert and Watson [20] introduce the scalar test equation

y′′ = −w2y (23)

and the interval of periodicity. When we apply a symmetric two-step method to the
scalar test equation (23), we obtain a difference equation of the form

yn+1 − 2Q(s)yn + yn−1 = 0, (24)

where s = wh, h is the step length, Q(s) = B(s)/A(s), where B(s) and A(s) are
polynomials in s and yn is the computed approximation to y(nh), n = 0, 1, 2, . . . . For
explicit methods, A(s) = 1.

The characteristic equation associated with (24) is

z2 − 2Q(s)z + 1 = 0. (25)

We have the following definitions.

Definition 2 ([35]). The method (24) with the characteristic equation (25) is uncondi-
tionally stable if |z1| 6 1 and |z2| 6 1 for all values of wh.

Definition 3. Following Lambert and Watson [20] we say that the numerical meth-
od (24) has an interval of periodicity (0,H2

0 ) if, for all s2 ∈ (0,H2
0 ), z1 and z2 satisfy

z1 = eiθ(s) and z2 = e−iθ(s), (26)

where θ(s) is a real function of s.

Definition 4 ([20]). The method (24) is P-stable if its interval of periodicity is (0,∞).

Based on the above we have the following theorems (for the proofs, see [34]).

Theorem 1. A method, which has the characteristic equation (25), has an interval of
periodicity (0,H2

0 ) if, for all s2 ∈ (0,H2
0 ), |Q(s)| < 1. For the implicit methods, the

above relation is equivalent to A(s)±B(s) > 0.
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If we apply the new method (14) to the scalar test equation (23), we obtain the
difference equation (24) and the characteristic equation (25) with

A(s) = 1 + s2b0 + s4b1b− s6b1ba, B(s) = 1− 1
2
s2b1 + s4b1b− s6b1ba. (27)

If we apply the coefficients b0, b1 and b obtained above we have:

Case I.

A(s)−B(s) =
1
2
s2,

A(s) +B(s) = 2− 1
3
s2 +

1
6
s4(−12 cosh(w) + 12 + 5w2 + w2 cosh(w))

w4(−1 + cosh(w))(1 + aw2)

− 1
6
s6(−12 cosh(w) + 12 + 5w2 + w2 cosh(w))a

w4(−1 + cosh(w))(1 + aw2)
. (28)

Case II.

A(s)−B(s) =
1
2
s2,

A(s) +B(s) = 2− 1
4
s2(2w2 cosh(w)− 4w4a+ w3 sinh(w)− 2w2 + 4w4 cosh(w)a

+ w5 sinh(w)a − 12aw2 + 16 cosh(w) − 8 cosh(w)2 + 24aw2 cosh(w)

− 12 cosh(w)2aw2 − 8
)/(

w2T0
)

− 1
2
s4(8 cosh(w)− 4− 4 cosh(w)2 + w3 sinh(w))

w4T0

+
1
2
s6(8 cosh(w)− 4− 4 cosh(w)2 + w3 sinh(w))a

w4T0

− 1
4
s2(w3 sinh(w) − 12aw2 + 16 cosh(w) − 8 cosh(w)2 − 8

− 12 cosh(w)2aw2 + w5 sinh(w)a+ 4w4 cosh(w)2a− 4w4 cosh(w)a

+ 24aw2 cosh(w) − 2w2 cosh(w) + 2w2 cosh(w)2)/(w2T0
)
,

T0 := 1− 2 cosh(w) + cosh(w)2 − 4aw2 cosh(w) + 2 cosh(w)2aw2 + 2aw2. (29)

Case III.

A(s)−B(s)

= 8
s2(−2 cosh(w) − 6aw2 cosh(w) + 3w2a+ 1 + cosh(w)2 + 3 cosh(w)2aw2)
(2w3 cosh(w)a+ w cosh(w) + 4w3a+ 2w + 6w2 sinh(w)a + sinh(w))w3 ,

A(s) +B(s) = 2 + s2(2w2 cosh(w) + 3w4a cosh(w)− 8 cosh(w) − 24aw2 cosh(w)

+ 24w2a+ 4w2 + 8− 2w sinh(w) + 6w4a+ 3w3a sinh(w)
)/((

2w3 cosh(w)a + w cosh(w) + 4w3a+ 2w + 6w2 sinh(w)a
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+ sinh(w)
)
w3)+ 2s4(−3 sinh(w) cosh(w) − cosh(w)2w + 3 sinh(w)

+ w cosh(w) + 2w sinh(w)2)/(w4(2w sinh(w)2 − cosh(w)2w

+ 4w3 sinh(w)2a+ 2w3 cosh(w)a − 2w3 cosh(w)2a

+ 6w2 cosh(w)a sinh(w) − 6w2 sinh(w)a− sinh(w) + w cosh(w)

+ sinh(w) cosh(w)
))
− 2s6(−3 sinh(w) cosh(w) − cosh(w)2w

+ 3 sinh(w) + w cosh(w) + 2w sinh(w)2)a/(w4(2w sinh(w)2

− cosh(w)2w + 4w3 sinh(w)2a+ 2w3 cosh(w)a− 2w3 cosh(w)2a

+ 6w2 cosh(w)a sinh(w) − 6w2 sinh(w)a− sinh(w) + w cosh(w)

+ sinh(w) cosh(w)
))

+ s2(−8 cosh(w)2 − 24 cosh(w)2aw2

+ 2w2 cosh(w) + 24aw4 cosh(w) + 3w4a cosh(w) + 8 cosh(w)

− 2w sinh(w) + 4w2 + 3w3a sinh(w) + 6w4a
)/((

2w3 cosh(w)a

+ w cosh(w) + 4w3a+ 2w + 6w2 sinh(w)a+ sinh(w)
)
w3). (30)

Requiring A(s) + B(s) > 0 for all values of v and remarking that the stability poly-
nomial A(s) +B(s) for all the cases can be written as

A(s) +B(s) = 2 + s2(c1 + c2s
2 + c4s

4), (31)

we find the appropriate values of a by solving the equation Dis = 0, where Dis is the
discriminant of the polynomial c1 + c2s

2 + c4s
4. So, we have the following values for

the coefficient a:

Case I.

a=

(
−1

2
wew +

1
2
w +

1
4

√
6w2(ew)2 + 12w2ew + 6w2 + 48ew − 24(ew)2 − 24

)
/(

(ew − 1)w3). (32)

The above formulae are subject to heavy cancellations for small values of w = vh.
In this case it is much more convenient to use series expansions for the coefficient a.
The Taylor series expansion of this coefficient is given by

a=
1

160
− 463

1612800
w2 +

1583
129024000

w4 − 2962027
5722472448000

w6

+
1984790747

89270570188800000
w8 − 295929081941

299949115834368000000
w10

+
55591933485043

1223792392604221440000000
w12

− 2482759929905892097
1145861293043184618700800000000

w14 + · · · . (33)
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Substituting the value of a given by (32) to the coefficient b given by (19) we obtain

b=
2
5

(
−12ew cosh(w) + 12ew + 5w2ew + eww2 cosh(w) + 12 cosh(w)− 12

− 5w2 − w2 cosh(w)
)/(

w3(−2wew + 2w

−
√

6w2e(2w) + 12w2ew + 6w2 − 24e2w − 24 + 48ew

+ 2 cosh(w)wew − 2 cosh(w)w

+ cosh(w)
√

6w2e(2w) + 12w2ew + 6w2 − 24e(2w) − 24 + 48ew
))
. (34)

The Taylor series expansion of this coefficient is given by

b=
1

200
− 463

2016000
w2 +

1583
161280000

w4 − 2962027
7153090560000

w6

+
1984790747

111588212736000000
w8 − 295929081941

374936394792960000000
w10

+
55591933485043

1529740490755276800000000
w12

− 2482759929905892097
1432326616303980773376000000000

w14 + · · · . (35)

For the above coefficients, we have that A(s)±B(s) > 0, i.e., the method is P-stable.

Case II.

a =
1
2

−8 cosh(w) + 4 + 4 cosh(w)2 − w3 sinh(w)
w2(w3 sinh(w) − 2w2 + 2w2 cosh(w)2 − 12− 12 cosh(w)2 + 24 cosh(w))

. (36)

The above formulae are subject to heavy cancellations for small values of w = vh.
In this case it is much more convenient to use series expansions for the coefficient a.
The Taylor series expansion of this coefficient is given by

a=
1

160
− 463

806400
w2 +

2143
64512000

w4 − 81413
56770560000

w6 +
496640621

11158821273600000
w8

− 509863901
892705701888000000

w10 − 104076245053
2317788622356480000000

w12

+
17695186777754263

3836589150814234214400000000
w14 + · · · . (37)

Substituting the value of a given by (36) to the coefficients bi, i = 0, 1, and b given
by (19) we obtain

b0 =− 1
16

(
−32w2 cosh(w)3 + 144 cosh(w)3 + 8w4 cosh(w)2 − 432 cosh(w)2

+ 96w2 cosh(w)− 24w3 sinh(w) cosh(w) + cosh(w)w6 + 4w5 cosh(w) sinh(w)

+ 432 cosh(w) + 24w3 sinh(w)− 64w2 − 144 − 8w4 + w6 + 4w5 sinh(w)
)
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w2(−4 cosh(w)3 + w2 cosh(w)3 −w2 cosh(w)2 + 12 cosh(w)2 − 12 cosh(w)

− w2 cosh(w) + w2 + 4
))

,

b1 =
1
8

(
8w4 cosh(w)3 + 144 cosh(w)3 − 64w2 cosh(w)3 − 432 cosh(w)2

+ 96w2 cosh(w)2 + 4w5 cosh(w) sinh(w) + cosh(w)w6 − 8w4 cosh(w)

+ 432 cosh(w)− 24w3 sinh(w) cosh(w) + 24w3 sinh(w)− 32w2 − 144

+ 4w5 sinh(w) + w6)/(w2(−4 cosh(w)3 + w2 cosh(w)3 − w2 cosh(w)2

+ 12 cosh(w)2 − 12 cosh(w)− w2 cosh(w) + w2 + 4
))

,

b=−
(
−8 cosh(w)3w2 + 48 cosh(w)3 + 8 cosh(w)2w2 − 144 cosh(w)2 + 144 cosh(w)

− 16w3 sinh(w) cosh(w) + w6 cosh(w) + 2w5 cosh(w) sinh(w) + 8w2 cosh(w)

− 8w2 − 48 + 16w3 sinh(w) + w6 + 2w5 sinh(w)
)/((
−64 cosh(w)3w2

+ 8w4 cosh(w)3 + 144 cosh(w)3 + 96 cosh(w)2w2 − 432 cosh(w)2 + 432 cosh(w)

+ 4w5 cosh(w) sinh(w)− 24w3 sinh(w) cosh(w) + w6 cosh(w)− 8w4 cosh(w)

− 32w2 + 24w3 sinh(w)− 144 + 4w5 sinh(w) + w6)w2). (38)

The Taylor series expansions of these coefficients are given by

b0 =
1
12
− 463

2419200
w4 +

1583
96768000

w6 − 2924279
2682408960000

w8

+
287402161

4184557977600000
w10 − 15059972261

3515028701184000000
w12

+
24822582683

93125435719680000000
w14 + · · · ,

b1 =
5
6

+
463

1209600
w4 − 1583

48384000
w6 +

2924279
1341204480000

w8

− 287402161
2092278988800000

w10 +
15059972261

1757514350592000000
w12

− 24822582683
46562717859840000000

w14 + · · · ,

b=
1

200
− 463

1008000
w2 +

1513
50400000

w4 − 6550231
3725568000000

w6

+
1233025133

12454041600000000
w8 − 53071754041

9763968614400000000
w10

+
35982534552827

124490599833600000000000
w12

− 594557721928816259
40348744074067968000000000000

w14 + · · · . (39)

For the above coefficients, we have that A(s)±B(s) > 0, i.e., the method is P-stable.
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Case III.

a=
1
2

(
8(ew)4 − 8w2(ew)3 + 8w(ew)3 − 32w2(ew)2 − 16(ew)2 − 8w2ew − 8wew + 8

− 4
(
10wew − 30w(ew)3 − 2w3(ew)6 − 8w3(ew)5 + w4(ew)2 + w4(ew)6

+ 18w4(ew)4 + 8w4(ew)5 + 4(ew)8 + 4 + 8(ew)3w4 + 2w3(ew)2 + 8w3(ew)3

− 2w2(ew)7 + 2w2(ew)5 + 2w2(ew)3 + 5w2(ew)6 − 10w2(ew)4 − 2w2ew

+ 5w2(ew)2 + 24(ew)4 − 16(ew)6 − 16(ew)2 + 30w(ew)5 − 10w(ew)7)1/2)/((
12w3(ew)3 + 12w3ew + 48w3(ew)2 + 12w2(ew)3 − 12w2ew − 24w(ew)4

+ 48w(ew)2 − 24w
)
w
)
. (40)

The above formulae are subject to heavy cancellations for small values of w = vh.
In this case it is much more convenient to use series expansions for the coefficient a.
The Taylor series expansion of this coefficient is given by

a=
1

160
− 463

537600
w2 +

901
14336000

w4 − 7291861
3179151360000

w6 − 261918823
2705168793600000

w8

+
287661416507

11109226512384000000
w10 − 369665045999663

135976932511580160000000
w12

+
74588635940806634503

381953764347728206233600000000
w14 + · · · . (41)

Substituting the value of a given by (40) to the coefficients bi, i = 0, 1, and b given
by (19) we obtain

b0 =
3
2

(
32 cosh(w)we(3w) + 12w2 + 20w sinh(w)e(2w) − 10w sinh(w)e(4w) + 32wew

− 16 cosh(w) + 6w2 cosh(w) + 6w3 sinh(w)e(3w) − 2w4 cosh(w)e(3w)

− 6w3 cosh(w)e(3w) + 2w2 sinh(w)e(3w) − 10w sinh(w) + 8
√
T0 + 16

+ 24w3 sinh(w)e(2w) − 16 cosh(w)e(4w) − 4w4ew + 12w3ew + 32 cosh(w)e(2w)

− 32 cosh(w)wew − 2w4 cosh(w)ew + 6w3 cosh(w)ew + w2 cosh(w)
√
T0

+ 6w3 sinh(w)ew − 2w2 sinh(w)ew + w sinh(w)
√
T0 + 2w2

√
T0

− 8 cosh(w)
√
T0 − 32we(3w) − 12w2 cosh(w)e(2w) + 6w2 cosh(w)e(4w)

− 16w4e(2w) + 16e(4w) − 32e(2w) − 12w3e(3w) − 4e(3w)w4 + 12w2e(4w)

− 24w2e(2w) − 8w4 cosh(w)e(2w))/(w3(10w2ew + 8w − 8w3e(2w) − 2w3e(3w)

− 10w2e(3w) − 16we(2w) + 4w cosh(w)− 2w3ew + 8we(4w) − 5w2 cosh(w)e(3w)

+ 5 cosh(w)w2ew − w3 cosh(w)e(3w) − w3 cosh(w)ew + 3w2 sinh(w)e(3w)

+ 3w2 sinh(w)ew − 4w3 cosh(w)e(2w) + 4w cosh(w)e(4w) − 8w cosh(w)e(2w)

+ w cosh(w)
√
T0 − 9w sinh(w)e(3w) + 12w2 sinh(w)e(2w) + 9 sinh(w)wew

+ 2w
√
T0 + 3 sinh(w)

√
T0
))

,
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T0 := 10wew + 4− 2w2ew − 2w3e(6w) − 30we(3w) +w4e(2w) + 24e(4w) + 8w4e(5w)

− 16e(2w) + w4e(6w) + 18w4e(4w) + 8w3e(3w) + 2w3e(2w) + 8e(3w)w4 + 4e(8w)

− 8w3e(5w) − 16e(6w) − 2w2e(7w) + 2w2e(5w) + 2w2e(3w) + 5w2e(6w)

− 10w2e(4w) + 5w2e(2w) + 30we(5w) − 10we(7w),

b1 = −3
(
− 32 cosh(w)we(3w) + 12w2 + 20w sinh(w)e(2w) − 10w sinh(w)e(4w)

+ 16 cosh(w)− 16 cosh(w)2 + 6w2 cosh(w) + 6w3 sinh(w)e(3w)

− 2w4 cosh(w)e(3w) − 6w3 cosh(w)e(3w) + 2w2 sinh(w)e(3w) − 10w sinh(w)

+ 24w3 sinh(w)e(2w) + 16 cosh(w)e(4w) − 4w4ew + 12w3ew − 8 cosh(w)2
√
T1

− 32 cosh(w)e(2w) + 32 cosh(w)wew − 2w4 cosh(w)ew + 6w3 cosh(w)ew

+ w2 cosh(w)
√
T1 + 6w3 sinh(w)ew − 2w2 sinh(w)ew + w sinh(w)

√
T1

+ 32 cosh(w)2e(2w) − 16 cosh(w)2e(4w) + 32 cosh(w)2we(3w) + 2w2
√
T1

+ 8 cosh(w)
√
T1 − 12w2 cosh(w)e(2w) + 6w2 cosh(w)e(4w) − 16w4e(2w)

− 12w3e(3w) − 4e(3w)w4 − 32 cosh(w)2wew + 12w2e(4w) − 24w2e(2w)

− 8w4 cosh(w)e(2w))/(w3(10w2ew + 8w − 8w3e(2w) − 2w3e(3w) − 10w2e(3w)

− 16we(2w) + 4w cosh(w)− 2w3ew + 8we(4w) − 5w2 cosh(w)e(3w)

+ 5 cosh(w)w2ew − w3 cosh(w)e(3w) − w3 cosh(w)ew + 3w2 sinh(w)e(3w)

+ 3w2 sinh(w)ew − 4w3 cosh(w)e(2w) + 4w cosh(w)e(4w) − 8w cosh(w)e(2w)

+ w cosh(w)
√
T1 − 9w sinh(w)e(3w) + 12w3 sinh(w)e(2w) + 9 sinh(w)wew

+ 2w
√
T1 + 3 sinh(w)

√
T1
))

,

T1 := 10wew + 4− 2w2ew − 2w3e(6w) − 30we(3w) +w4e(2w) + 24e(4w) + 8w4e(5w)

− 16e(2w) + w4e(6w) + 18w4e(4w) + 8w3e(3w) + 2w3e(2w) + 8e(3w)w4 + 4e(8w)

− 8w3e(5w) − 16e(6w) − 2w2e(7w) + 2w2e(5w) + 2w2e(3w) + 5w2e(6w)

− 10w2e(4w) + 5w2e(2w) + 30we(5w) − 10we(7w),

b = −1
2

(
−3 sinh(w) cosh(w)− cosh(w)2w + 3 sinh(w) + w cosh(w) + 2w sinh(w)2)

×
(
w cosh(w) +

w2 cosh(w)T2

T3
+ 2

w2T2

T3
+ 2w + 3

w sinh(w)T2

T3
+ sinh(w)

)
/(

w

(
2w sinh(w)2 − cosh(w)2w + 2

w2 sinh(w)2T2

T3
+
w2 cosh(w)T2

T3

− w2 cosh(w)2T2

T3
+ 3

w cosh(w)T2 sinh(w)
T3

− 3
w sinh(w)T2

T3
− sinh(w)

+ w cosh(w) + sinh(w) cosh(w)

)(
−8 cosh(w)2 − 12

cosh(w)2T2w

T3
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+ 2w2 cosh(w) + 12
T2w cosh(w)

T3
+

3
2
w3T2 cosh(w)

T3
+ 8 cosh(w)− 2w sinh(w)

+ 4w2 +
3
2
w2T2 sinh(w)

T3
+ 3

w3T2

T3

))
,

T2 := 8(ew)4 − 8w2(ew)3 + 8w(ew)3 − 32w2(ew)2 − 16(ew)2 − 8w2ew − 8wew + 8

− 4
(
10wew − 30w(ew)3 − 2w3(ew)6 − 8w3(ew)5 + w4(ew)2 + w4(ew)6

+ 18w4(ew)4 + 8w4(ew)5 + 4(ew)8 + 4 + 8(ew)3w4 + 2w3(ew)2 + 8w3(ew)3

− 2w2(ew)7 + 2w2(ew)5 + 2w2(ew)3 + 5w2(ew)6 − 10w2(ew)4 − 2w2ew

+ 5w2(ew)2 + 24(ew)4 − 16(ew)6 − 16(ew)2 + 30w(ew)5 − 10w(ew)7)1/2
,

T3 := 12w3(ew)3 + 12w3ew

+ 48w3(ew)2 + 12w2(ew)3 − 12w2ew − 24w(ew)4 + 48w(ew)2 − 24w. (42)

The Taylor series expansions of these coefficients are given by

b0 =
1

12
− 463

806400
w4 +

48641
580608000

w6 − 39041609
4768727040000

w8

+
26589631841

44635285094400000
w10 − 4035312085333

149974557917184000000
w12

− 43370585700139
67988466255790080000000

w14 + · · · ,

b1 =
5
6

+
463

403200
w4 +

6919
290304000

w6 − 19466071
2384363520000

w8

+
23296561399

22317642547200000
w10 − 7070580531227

74987278958592000000
w12

+
2799639972287

441483547115520000000
w14 + · · · ,

b=
1

200
− 463

672000
w2 +

5431
89600000

w4 − 12716387
2838528000000

w6

+
270621097441

929901772800000000
w8 − 338138001379

23144221900800000000
w10

+
3647766243428891

21246395704934400000000000
w12

+
5103176966188546746119

59680275679332532224000000000000
w14 + · · · . (43)

For comparison purposes, in table 1 we list the properties of the two-step ex-
ponentially fitted methods introduced in this paper, together with the corresponding
properties of some similar two-step exponentially-fitted methods presented previously
in the literature. We note that all the methods are implicit.
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Table 1
Properties of some two-step exponentially-fitted methods.

Method Algebraic Interval of Integrated exponential
order periodicity functions

Numerov’s method 4 (0,6) 1, x,x2, x3,x4,x5

Derived by Raptis and Allison [27] 4 (0,∞)− S m = 0, p = 3
Derived by Ixaru and Rizea [14] 4 (0,∞)− S m = 1, p = 1
Derived by Raptis [24] 4 (0,∞)− S m = 2, p = 0
Derived by Raptis and Cash [28]∗ 6 (0,∞)− S m = 0, p = 5
Derived by Cash, Raptis and Simos [3]∗ 6 (0,∞)− S m = 1, p = 3
Derived by Simos [32]∗ 6 (0,∞)− S m = 2, p = 0
Method of TMS – case I∗∗ 4 (0,∞)− S m = 0, p = 7
Method of TMS – case II∗∗ 4 (0,∞)− S m = 1, p = 5
Method of TMS – case III∗∗ 4 (0,∞)− S m = 2, p = 3
New method – case I 4 (0,∞) m = 0, p = 5
New method – case II 4 (0,∞) m = 1, p = 3
New method – case III 4 (0,∞) m = 2, p = 1

S = {H2: H = sqπ, q = 1, 2, . . .}. The quantities m and p are defined by (3).
∗Hybrid two-step method. ∗∗ TMS = Thomas, Mitsou and Simos [36].

The new methods are of algebraic order four and are P-stable while the interval
of periodicity of the other well-known exponentially-fitted methods listed in table 1 is
(0,∞) − S, where S is a set of distinct points. The hybrid methods listed in table 1
have algebraic order six. However, the new methods are P-stable. For the above
reason, the methods perform better with large step lengths.

6. Numerical illustrations

In this section we present some numerical results to illustrate the performance of
our new methods. Consider the numerical integration of the Schrödinger equation (1).

6.1. Resonance problem

In the asymptotic region, equation (1) effectively reduces to

y′′(x) +

(
k2 − l(l + 1)

x2

)
y(x) = 0, (44)

for x greater than some value X.
The above equation has linearly independent solutions kxjl(kx) and kxnl(kx),

where jl(kx) and nl(kx) are the spherical Bessel and Neumann functions, respectively.
Thus the solution of equation (1) has the asymptotic form (when x→∞)

y(x)'Akxjl(kx)−Bnl(kx)

'D
[

sin(kx− πl/2) + tan δl cos(kx− πl/2)
]
, (45)
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where δl is the phase shift which may be calculated from the formula

tan δl =
y(x2)S(x1)− y(x1)S(x2)
y(x1)C(x2)− y(x2)C(x1)

, (46)

for x1 and x2 distinct points in the asymptotic region (for which we have that x1 is the
right-hand and point of the interval of integration and x2 = x1 − h, h is the stepsize)
with S(x) = kxjl(kx) and C(x) = kxnl(kx).

Since the problem is treated as an initial-value problem, one needs y0 and y1

before starting a two-step method. From the initial condition, y0 = 0. The value y1 is
computed using the Runge–Kutta–Nyström 12(10) method of Dormand et al. [9,10].
With these starting values we evaluate at x1 of the asymptotic region the phase shift δl
from the above relation.

6.1.1. The Woods–Saxon potential
As a test for the accuracy of our methods we consider the numerical integration

of the Schrödinger equation (1) with l = 0 in the well-known case where the potential
V (r) is the Woods–Saxon one:

V (r) = Vw(r) =
u0

(1 + z)
− u0z

[a(1 + z)]2 (47)

with z = exp[(r −R0)/a], u0 = −50, a = 0.6 and R0 = 7.0.
The problem considered here consists of either finding the phase shift δ(E) = δl

or finding those E, for E ∈ [1, 1000], at which δ is equal to π/2. In our case we find
the phase shifts for given energies. The obtained phase shift is then compared to the
accurate value of the phase shift which is equal to π/2.

For positive energies one has the so-called resonance problem. This problem
consists of either finding the phase shift δ(E) = δl or finding those E, for E ∈
[1, 1000], at which δ is equal to π/2. We actually solve the latter problem, using the
technique fully described in [1], known as the “resonance problem” when the positive
eigenenergies lie under the potential barrier.

The boundary conditions for this problem are

y(0) = 0, y(x) ∼ cos
[√
Ex
]

for large x.

The domain of numerical integration is [0, 15].
For comparison purposes in our numerical illustration, we use the well-known

Numerov’s method (which is indicated as method [a]), the exponentially-fitted methods
of Raptis and Allison [27] (which is indicated as method [b]) and Ixaru and Rizea [14]
(which is indicated as method [c]), the method of Chawla et al. [4] (which is indicated
as method [d]), the method of Chawla et al. [5] (which is indicated as method [e]), the
method of Thomas, Mitsou and Simos (case III) [36] (which is indicated as method [f]),
the new exponentially-fitted method (case I) (which is indicated as method [g]), the
new exponentially-fitted method (case II) (which is indicated as method [h]) and the
new exponentially-fitted method (case III) (which is indicated as method [i]).
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Figure 1. Values of Err for several values of n for the resonance E = 989.7019159. The nonexistance
of a value for a method indicates that Err is negative.

The numerical results obtained for the four methods, with stepsizes equal to
h = 1/2n, were compared with the analytic solution of the Woods–Saxon potential
resonance problem, rounded to six decimal places. Figure 1 show the errors Err =
− log10|Ecalculated−Eanalytical| of the highest eigenenergy E3 = 989.701916 for several
values of n.

The performance of the present method is dependent on the choice of the fitting
parameter v. For the purpose of obtaining our numerical results, it is appropriate to
choose v in the way suggested by Ixaru and Rizea [14]. That is, we choose

v =

{
(−50−E)1/2 for x ∈ [0, 6.5],
(−E)1/2 for x ∈ [6.5, 15].

(48)

For a discussion of the reasons for choosing the values 50 and 6.5 and the extent to
which the results obtained depend on these values, see [14, p. 25].

6.1.2. Modified Woods–Saxon potential
In figure 2 some results for Err = − log10|Ecalculated − Eanalytical | of the high-

est eigenenergy E3 = 1002.768393, for several values of n, obtained with another
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Figure 2. Values of Err for several values of n for the resonance E = 1002.768393. The nonexistance
of a value for a method indicates that Err is negative.

potential in (1) using the methods mentioned above are shown. This potential is

V (x) = VW (x) +
D

x
, (49)

where VW is the Woods–Saxon potential (47). For the purpose of our numerical
experiments, we use the same parameters as in [14], i.e., D = 20, l = 2.

Since V (x) is singular at the origin, we use the special strategy of [14]. We start
the integration from a point ε > 0 and the initial values y(ε) and y(ε + h) for the
integration scheme are obtained using a perturbative method (see [13]). As in [14],
we use the value ε = 1/4 for our numerical experiments.

For the purpose of obtaining our numerical results, it is appropriate to choose v
in the way suggested by Ixaru and Rizea [14]. That is, we choose

v =


[V (a1) + V (ε)]/2 for x ∈ [ε, a1],
V (a1)/2 for x ∈ (a1, a2],
V (a3) for x ∈ (a2, a3],
V (15) for x ∈ (a3, 15],

where ai, i = 1(1)3, are fully defined in [14].
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In all cases the new exponentially-fitted P-stable methods developed in this paper
are more accurate than the other similar well-known exponentially-fitted ones.

7. Conclusions

In this paper, a new approach for constructing exponentially-fitted methods is
developed. Using this new approach we can construct methods which exactly integrate
functions of the form (3) and which are P-stable. With this new approach we must
know only one approximation of the frequency of the problem for each interval of
integration. Based on this new approach, two P-stable exponentially-fitted methods
are obtained. Numerical and theoretical results show that these methods are much
more accurate than similar well-known exponentially-fitted ones, i.e., methods which
integrate the same functions.

All computations were carried out on a IBM PC-AT compatible 80486 using
double precision arithmetic with 16 significant digits accuracy (IEEE standard).
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